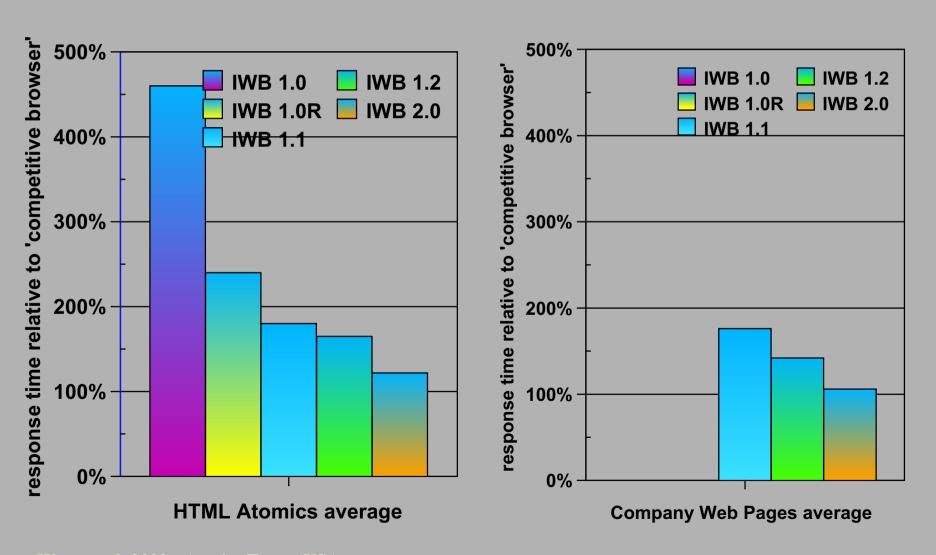

Warpstock 2002, Austin, Texas, USA Austin Renaissance Arboretum October, 5-6 2002

Sam Emrick, IBM eBusiness Systems Performance

OS/2 Speed and Performance

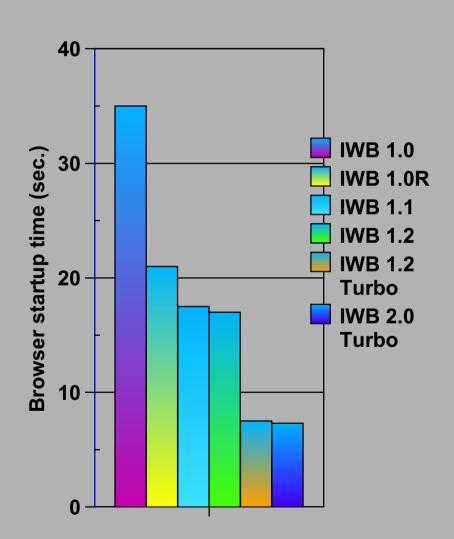
OS/2 Performance Update Agenda

- IBM Web Browser
- Java 1.3.1
- Convenience Pak 2
- Hints and Tips
- O's & A's

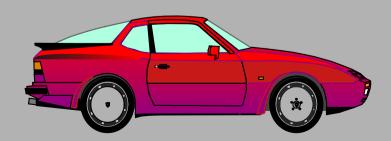


IBM Web Browser

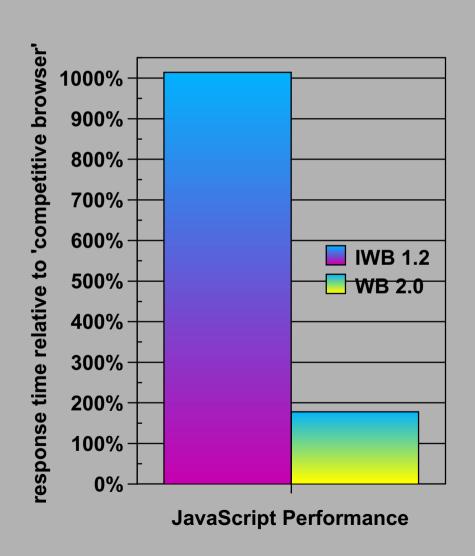
- Steady work in performance since IWB 1.0
- Mozilla base improvements
- OS/2 implementation improvements
- Result is vastly improved browser



IWB Performance History



IWB Performance History



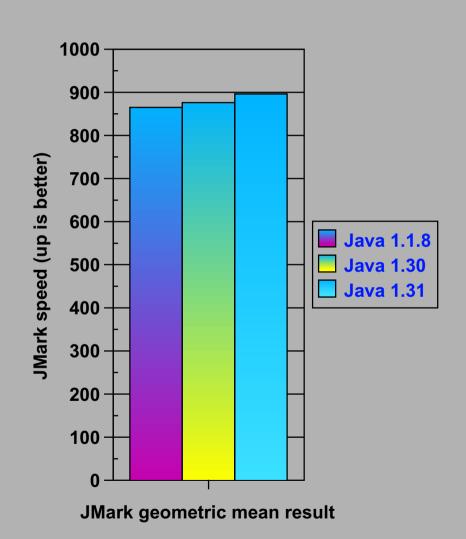
The OS/2-specific 'turbo mode' preloads browser DLL's at boot.

IWB Performance History

Much progress was made in JavaScript.

It remains an area for more improvement.

IBM Web Browser


- Full-function, standards compliant browser
 - See Mike Kaply's presentation about it!

Now with competitive performance !!

OS/2 Java Performance History

- The latest Java performance technology
 - **□ IBM JIT**
 - many refinements across the board

Java 1.31 Performance Optional Parameters

New -Xquickstart

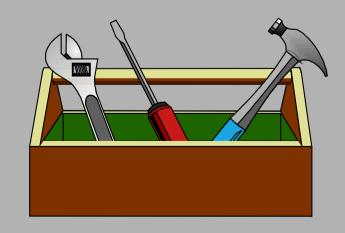
- without it --- more aggressive JIT optimization
- with it --- less aggressive, faster startup time

SET JAVA_HIGH_MEMORY=1

- without it -- heap uses process private memory
- **■** with it **--** heap uses private high memory

OS/2 Convenience Pak 2

- Maintains performance of Convenience Pak
 - excepting minor fixes and tweaks
 - for example, TCPCFG2 and LVMGUI


- Compared to earlier releases....
 - JFS makes other OS/2 files systems seem slow

(for most usual and typical kinds of workloads)

OS/2-related Performance Hints & Tips

OS/2 Performance - Hints & Tips Browser & HTML

- The factor primarily driving browser performance is page content. 'Tight' content produces speed, sloppy content gives poor performance. 'Which browser' is secondary factor to speed.
- Design pages around 'form follows function'. Avoid useless eye-catchers, widgets, superfluous graphics, complex JavaScript. Focus on 'essential content', then add 'additional content' only as performance allows.

OS/2 Performance - Hints & Tips Browser & HTML

- Use text attributes and style sheets for text, not GIF.
- HTML 'code cleaners/compressors' add useful performance. HTML comments and whitespace are relatively expensive.
- Scrub images, to correct scale, minimize color depth
- Extensive information on web page performance optimizations and tuning can be found on the web!

OS/2 Performance - Hints & Tips Browser & HTML

- In Mozilla and IWB 'status bar' updates are expensive operations.
- 'Tabbed mode' browsing (use Ctrl-Enter) much faster than Forward-Back navigation.
 - Can 'bookmark' a set of pages together, loading all.

- Web and literature have much good information. Yet, common mistakes persist....
- Always and every time... use buffered I/O
 - Recent customer code example,
 - String tokenizer on RandomFile stream
 - was 15x slower than minor rewrite to
 - Steam tokenizer on BufferedStream

- Functional modularity is often abused.
 - **■** 1-line functions calling 1-line functions...
 - is not the path to good Java performance.
- Avoid limited-use method overwrites.
 - Recent customer example....
 - dozens java/lang overwrites to do...
 - error debug message replacement text...
 - being piped to null in production code.

- Determine heap requirement (verbosegc), set starting heap to requirement.
- Reduce garbage collection by reducing the amount of garbage being produced.
- If at all possible, avoid JVM specific, platform-specific and 'workaround' code.

- Multiple Java application, multiple JVMs may consume much memory, because of having multiple JVM heaps.
 - Consider combining the multiple applications to run under a single JVM.
 - In many cases, implementation is trivial. However, in some cases, its very difficult.

- Timer granularity is platform-specific. Small values for sleep(), wait(), etc. will behave differently on different platforms. Normal OS/2 granularity is 32 ms.

 - However, on CPak see SET CLOCKSCALE

OS/2 Performance - Hints & Tips OS/2 & SMP

- Memory, virtual and real
 - Remove unneeded system components.
 - Don't autostart seldom used function.
 - Insure any 16-bit programs properly linked.
 - Consider use HIGHMEM for large buffers.
 - Modern s/w technologies requires modern h/w

OS/2 Performance - Hints & Tips OS/2 & SMP

- Useful CONFIG.SYS changes
 - MAXWAIT=1
 - **SET CLOCKSCALE=4**
 - Review IFS cache sizes, especially JFS
 - **□ RUN=... MPTSTART.CMD**
 - Tune IBM1S506.ADD to actual h/w config
 - REM all the unneeded supports

OS/2 Performance - Hints & Tips OS/2 & SMP

- SMP scaling, from 'near perfect' to 'near none', nearly entirely dependent on apps.
 - Multiple independent applications scale best.
 - Single-purpose systems/apps scale worst.
 - With SMP, effective use of hardware is key to achieve best performance.
 - fast disk subsystems, balanced utilization.
 - effective use of large RAM memory.

OS/2 Speed and Performance

The

End